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Abstract

In the present paper, we gauge the performance of finite-difference schemes with Runge–Kutta time integration for
wave propagation problems by rigorously defining appropriate cost and error metrics in a simple setting represented by
the linear advection equation. Optimal values of the grid spacing and of the time step are obtained as a result of a cost
minimization (for given error level) procedure. The theory suggests superior performance of high-order schemes when
highly accurate solutions are sought for, and in several space dimensions even more. The analysis of the global discreti-
zation error shows the occurrence of two (approximately independent) sources of error, associated with the space and time
discretizations. The improvement of the performance of finite-difference schemes can then be achieved by trying to sepa-
rately minimize the two contributions. General guidelines for the design of problem-tailored, optimized schemes are pro-
vided, suggesting that significant reductions of the computational cost are in principle possible. The application of the
analysis to wave propagation problems in a two-dimensional environment demonstrates that the analysis carried out
for the scalar case directly applies to the propagation of monochromatic sound waves. For problems of sound propagation
involving disparate length-scales the analysis still provides useful insight for the optimal exploitation of computational
resources; however, the actual advantage provided by optimized schemes is not as evident as in the single-scale, scalar case.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computational aeroacoustics and direct numerical simulation of compressible turbulence require the use of
high-fidelity numerical schemes, which must be capable to resolve a broad range of length scales, often orders
of magnitude apart. For this purpose compact schemes have been developed, [8] which guarantee spectral-like
resolution properties, are cheaper to use than spectral and pseudo-spectral schemes and are easier to handle,
especially when non-trivial geometries are involved. It is well known [12] that the order of the truncation error
of a numerical scheme only provides informations on the asymptotic convergence rate to the exact solution,
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but it does not convey any information on the actual error on a finite computational grid; rather, wave-prop-
agation characteristics of a difference scheme provide informations on all the Fourier components supported
on the grid. As a result of Fourier analysis, optimized (or dispersion–relation–preserving, DRP) finite-differ-
ence schemes have been developed [11,9], which are capable to accurately resolve harmonic components with
few points-per-wavelength.

The issue of the computational efficiency of finite-difference schemes has been investigated in detail by Col-
onius and Lele [2]; those authors considered the behavior of several types of spatial discretizations, implicitly
assuming exact time integration, and concluded that for normalized errors (defined as the relative error
between the exact and modified wavenumber) less than about 1% optimized schemes, and in particular the
sixth-order pentadiagonal optimized scheme of Lui and Lele [9], are most efficient despite a higher operation
count compared to non-optimized ones. The error associated with approximate time integration (generally
performed by means of Runge–Kutta or Linear Multi-step time marching methods) is usually considered sep-
arately from the spatial error [2]. Hu et al. [7] have developed optimized Runge–Kutta schemes, which attempt
to minimize the integrated dispersion and dissipation errors associated with time integration over a certain
range of Courant numbers.

In the present paper, we attempt to develop a general strategy for the analysis of the efficiency of finite-dif-
ference schemes for wave propagation problems, trying to involve time integration in the analysis in a natural
way. For this purpose we proceed by rigorously defining error and cost metrics for the one-dimensional linear
advection equation, and show that appropriate choices for the grid spacing and the time step naturally stem
from a cost minimization procedure for a given error level; such optimal choice depends upon both the phys-
ical parameters of the problem and on the accuracy requirements. The analysis also leads to rational and sim-
ple criteria for deriving optimized space- and time-discretization schemes, based on concepts similar to that of
‘resolving efficiency’ introduced by Lele. A careful design of the space- and time-discretization schemes, as well
as an appropriate choice of the grid spacing and of the time step can yield substantial computer time savings,
which could help CFD and CAA practitioners. The main focus of the present paper is on assessing the wave
propagation features of finite-difference schemes; accordingly, the effects of nonlinearities and of boundary
conditions, which are extremely important for the accuracy and stability of numerical algorithms for practical
calculations (see, e.g. Ref. [1] for a comprehensive review), are not addressed, and left for future work. Weak
nonlinearities can in principle be accounted for, as shown in Section 2.4, even though quantitative assessment
of the theory in that case is made difficult by the lack of exact solutions.

The paper is organized as follows: in Section 2 we rigorously define cost and error metrics for wave prop-
agation problems using the linear advection equation as a model, and search for optimal performance of finite-
difference schemes; in Section 3 we compare the performance of various explicit and compact schemes, and
address the effect of the problem dimensionality; in Section 4 we analyze the contribution of space and time
discretization to the global error; in Section 5 we present general guidelines for the optimization of space and
time-discretization schemes; finally, in Section 6 we present results of numerical simulations of the two-dimen-
sional acoustics equations, and show comparison with theoretical predictions.

2. Performance analysis of finite-difference schemes

In order to arrive at simple predictive formulas we consider (as customary in the literature) as a model
problem the linear advection equation in an unbounded (one-dimensional) domain
ut þ aux ¼ 0; �1 < x < þ1; uðx; 0Þ ¼ u0ðxÞ; ð1Þ

and assume a > 0. We additionally assume sinusoidal monochromatic initial conditions with wavelength k
(and wavenumber w = 2p/k),
u0ðxÞ ¼ û0eiwx: ð2Þ

Let us consider the discretization of Eq. (1) on a uniform grid with spatial spacing h and time step k; the exact
solution of Eq. (1) at time T = nk is
uðx; T Þ ¼ ûneiwx; ð3Þ



S. Pirozzoli / Journal of Computational Physics 222 (2007) 809–831 811
with
ûn ¼ e�inruû0; ð4Þ

where u = wh (�p 6 u 6 p) is the reduced wavenumber, and r = ak/h is the Courant number. A linear finite
difference approximation of Eq. (1) yields instead an approximate solution [12,8,2]
vðx; T Þ ¼ v̂neiwx; ð5Þ

with
v̂n ¼ gnû0; ð6Þ

where g = g(u, r) is the amplification factor of the difference scheme [6], which depends both upon the
space and time discretizations. Considering approximations of the spatial derivative of v (v 0 � ov/ox) of the
type
XR

L¼�Q

aLv0jþL ¼
1

h

Xr

l¼�q

alvjþl; ð7Þ
and an s-stage Runge–Kutta scheme for time integration, one has [7]
gðu; rÞ ¼
Xs

m¼0

cmð�irUðuÞÞm; ð8Þ
where the coefficients cm are related to the coefficients of the Runge–Kutta scheme, and where
UðuÞ ¼ 1

i

Pr
l¼�qale

iluPR
L¼�QaLeiLu

; ð9Þ
is the modified wavenumber [8] associated with the spatial discretization. The coefficients aL, al that appear in
Eq. (7) may be chosen either to minimize the truncation error, thus yielding v0j ¼ ov=oxðxjÞ þOðhQþRþqþrÞ, or
else to optimize the behavior in wavenumber space so as to have U � u [11,9], at the expense of the formal
order of accuracy. In the following we will denote non-optimized spatial discretizations with the symbol
CQRqr (for example, C0011 corresponds to the second-order explicit central scheme), and consider the Lui
and Lele scheme [9] as representative of optimized schemes. With regard to time integration, the coefficients
cm in Eq. (8) may be either chosen to minimize the truncation error, thus having cm = 1/m!, or to minimize the
dissipation and dispersion error, as done by Hu et al. [7]. Non-optimized, sth order Runge–Kutta schemes will
be labeled in the following as RKs.

2.1. Definition of an error metric

We define the solution error as the distance in L2 norm of the approximate solution from the exact solution
at time T
jvð�; T Þ � uð�; T Þj2 ¼
1

k

Z x0þk

x0

jvðx; T Þ � uðx; T Þj2 dx
� �1=2

¼ jv̂n � ûnj ¼ jgn � e�inrujjû0j

¼ jgn � e�inrujju0ð�Þj2: ð10Þ
Let dg ” g � e�iru be the difference between the approximate and the exact amplification factor, one has
gn ¼ ðe�iru þ dgÞn ¼ e�inruð1þ dgeiruÞn � e�inruð1þ ndgeiruÞ; ð11Þ

having assumed jdgj � 1; such assumption is satisfied by any reasonably accurate scheme, and can be checked
a posteriori. We then obtain
gn � e�inru � ndge�iðn�1Þru; ð12Þ
and finally
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jgn � e�inruj � n � jgðu; rÞ � e�iruj: ð13Þ

We define the relative error at time T as
E ¼ jvð�; T Þ � uð�; T Þj2
ju0ð�Þj2

� ðawT Þ � jgðu; rÞ � e�iruj
ru

; ð14Þ
having noticed that n = (awT)/(ru).

2.2. Definition of a cost metric

For the purpose of consistently defining a cost metric, we assume [2] that the computational cost is

(1) proportional to the total number of points, i.e. L/h, where L is the size of the computational
domain;

(2) proportional to the number of operations/node required by the spatial discretization scheme, say Nop;
(3) proportional to the number of Runge–Kutta stages, s;
(4) proportional to the number of time steps, n = T/k,

thus yielding
C � sN opTL
1

kh
¼ sN op � ðawT Þ � ðwLÞ � 1

ru2
: ð15Þ
In the present work we have borrowed the estimates of the operation count (in terms of floating point oper-
ations/node) reported by Colonius and Lele (see Table 2 of Ref. [2]).
2.3. Optimal performance for single-scale problems

We point out that in Eqs. (14) and (15) the non-dimensional groups awT (which is a measure of the number
of wavelengths traveled by the wave in a time interval T) and wL (which is a measure of the number of wave-
lengths contained in the computational domain) are dictated only by the problem under consideration, while
the space and time discretization enter through s, Nop and g(u, r). The analysis of the performance of finite-
difference schemes for a given physical problem (i.e. for given values of awT, wL) can then be carried out in
terms of normalized error and cost functions
eðu; rÞ � E
awT

¼ jgðu; rÞ � e�iruj
ru

;

cðu; rÞ � C
ðawT Þ � ðwLÞ ¼ sN op

1

ru2
:

ð16Þ
Optimizing the performance of a given scheme (i.e. for given values of s, Nop) for a given problem amounts to
requiring that the computational cost be minimum for a given error level; this can be done by specifying a
target level for the relative error, say �, which implies
eðu; rÞ ¼ �

awT
� ~�; ð17Þ
and then minimizing the computational cost, i.e. finding the minimum value of the cost function c � 1/(ru2)
compatible with the constraint (17), as well as with the stability limitation jg(u,r)j 6 1 "u; the latter constraint
yields a limitation on the maximum value of the Courant number, r 6 rmax, which depends upon both the
spatial and temporal discretizations.

The interpretation of the optimization problem is made particularly simple from inspection of the iso-lines
of the normalized error and normalized cost functions in the u, r plane, as done in Fig. 1 for some represen-
tative spatial discretizations with three-stage, third-order Runge–Kutta time integration. For any specified
value of ~� one can in general find a pair of values ðu�ð~�Þ; r�ð~�ÞÞ that minimize 1/(ru2), and which correspond
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Fig. 1. Iso-contours of normalized ‘local’ error function e(u,r) (solid lines) and normalized (one-dimensional) cost function 1/(ru2)
(dashed lines). RK3 time integration. The upper boundary corresponds to r = rmax. The black dot indicates optimal working conditions
for ~� ¼ 10�4.
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to the tangency points of the two families of curves depicted in Fig. 1. The corresponding normalized (optimal)
cost is given by
~cð~�Þ ¼ cðu�ð~�Þ; r�ð~�ÞÞ ¼ sN op

1

r�u�2
: ð18Þ
After having determined optimal values of u*, r*, one then obtains optimal values of the grid spacing and for
the time step, which depend upon the target error level
h�ð~�Þ ¼ u�ð~�Þ=w; k�ð~�Þ ¼ r�ð~�Þh�ð~�Þ=a: ð19Þ

For illustrative purposes, let us consider the C2233/RK3 scheme (for which s = 3, Nop = 17), and assume as
test problem the one-dimensional propagation of a sine wave with wavenumber w = 10 and wave speed a = 1
in a computational domain of extent L = 2p. If a maximum relative error � = 10�2 on the computed solution is
required at the time T = 10, to which corresponds a normalized error level ~� ¼ �=ðawT Þ ¼ 10�4, the cost min-
imization procedure would give (see Fig. 1, where the optimal point is reported as a black dot) u* = 1.347,
r* = 0.0967; the associated ‘optimal’ normalized cost (as from Eq. (18)) is ~c ¼ 290:7. The optimal values
for the grid spacing and for the time step, as computed from Eq. (19) are h* = 0.1347 (and the corresponding
number of grid cells would be L/h* � 47), and k* = 0.0130.
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2.4. Optimal performance for multi-scale problems

When dealing with nonlinear propagation problems and/or with broadband signals, the primary effect is to
have a whole range of spatial scales (wavenumbers), say 0 6 w 6 w, and propagation velocities, say 0 6 a 6 a.
In this case the formula for the relative error, being n ¼ ð�a�wT Þ=ð�r�uÞ, becomes
E ¼ ð�a�wT Þ � jgðu; rÞ � e�iruj
�r�u

; ð20Þ
while the cost function becomes
C � ð�a�wT Þ � ð�wLÞ � �cð�u; �rÞ; ð21Þ

with
�cð�u; �rÞ ¼ sN op

1

�r�u2
: ð22Þ
The accuracy requirement that we enforce in this case dictates that the relative error be less than a given
threshold for all possible values of u, r, i.e.
E 6 �; 8ðu; rÞ 2 ½0; �u	 
 ½0; �r	; ð23Þ
where �u ¼ �wh and �r ¼ �ak=h, which implies
�eð�u; �rÞ � 1

�a�wT
� max
ðu;rÞ2½0;�u	
½0;�r	

E

¼ 1

�r�u
� max
ðu;rÞ2½0;�u	
½0;�r	

jgðu; rÞ � e�iruj 6 �

�a�wT
� ~�: ð24Þ
The only change from the single-scale case is the replacement of the normalized error function e in Eq. (17)
with �e, as defined in Eq. (24). The iso-contour lines of �eð�u; �rÞ are reported in Fig. 2 together with the iso-cost
lines; such ‘global’ normalized error differs from the ‘local’ one (compare with Fig. 1) only near points of
local extrema of e(u, r). The interpretation goes along the same lines as for the single-scale case: for each
value of ~� there is a couple of values ð�u�ð~�Þ; �r�ð~�ÞÞ that minimize the cost. The corresponding normalized
(optimal) cost is
~cð~�Þ ¼ �cð�u�ð~�Þ; �r�ð~�ÞÞ ¼ sN op

1

�r��u�2 : ð25Þ
We point out that the accuracy requirement (23) implicitly attributes the same importance to all the flow
scales; in some situations, however, such as for numerical simulation of turbulent flows, one may wish to accu-
rately compute the energy containing scales, and perhaps relax the accuracy requirement for the smaller ones.
This might be accounted for by introducing an appropriate weighing function in wavenumber space in the
definition of the error; we leave it for future work.

It is important to stress that the problem of optimal performance of a given scheme can be equivalently cast
in terms of achieving minimal error for given computational cost; is that case one would specify an affordable
level of computational cost, and try to determine the lowest compatible error. Of course, the resulting error–
cost relationship would be exactly the same as the one expressed in Eq. (25), and the optimal reduced wave-
number and Courant number would be determined as a function of cost, being ~� ¼ ~�ð~cÞ. The interpretation of
the optimization problem in terms of cost is particularly important for multi-scale problems, since the actual
error incurred in numerical simulations depends upon the energy content of the solution in wavenumber
space, and therefore one may expect that the error map in the (u, r) plane to depend upon the specific solution
that one is computing. On the contrary, the normalized cost metric does not depend on the details of the solu-
tion, but rather is invariant in the (u, r) plane by virtue of its definition. We will go back to this point and
provide illustrative examples when discussing the application of the present theory to problems of practical
relevance in Section 6.
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Fig. 2. Iso-contours of normalized ‘global’ error function �eð�u; �rÞ (solid lines) and normalized (one-dimensional) cost function 1=ð�r�u2Þ
(dashed lines). RK3 time integration. The upper boundary corresponds to �r ¼ rmax.
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2.5. Multi-dimensional problems

The effect of the number of space dimensions can be partially accounted for in the analysis by assuming
again the linear advection equation as working model, and consider monochromatic plane wave solutions.
As shown in Ref. [8], although waves propagate non-isotropically on a finite mesh, the discrete propagation
properties in directions not aligned with the grid lines only depend upon the ‘one-dimensional’ spectral prop-
erties of the scheme (i.e. its approximate dispersion relation), and the error is maximum for waves propagating
along the coordinate directions [8,2]. We therefore assume: (i) uniform (and equal) grid spacing in the coor-
dinate directions; and (ii) wave propagation along the grid lines. Under these assumptions, one can entirely
borrow the one-dimensional analysis carried out in Section 2 but for the definition of the cost function, which
must account for the fact that the total number of points is now V =hnD , where V is the volume of the compu-
tational domain, and nD is the number of spatial dimensions, yielding
C � ð�a�wT Þ � ð�wnD V Þ � �cnD
ð�u; �rÞ; ð26Þ
where the normalized cost function is
�cnD
ð�u; �rÞ ¼ sN op

1

�r�unDþ1
; ð27Þ
in the place of Eqs. (21) and (22).



816 S. Pirozzoli / Journal of Computational Physics 222 (2007) 809–831
3. Efficiency comparison

In order to compare the performance of different schemes it is sufficient to analyze the (normalized) error vs
cost relation, accounting for the operation count estimate reported in Ref. [2]. The results of the analysis
are shown in Fig. 3 for various spatial discretizations coupled with three-stage, third-order Runge–Kutta time
integration (RK3); the figure reveals some interesting features, some of which were already reported in
Fig. 3. ‘Optimal’ error, reduced wavenumber and Courant number as a function of cost for various spatial discretizations coupled with
RK3 time integration in one space dimension.
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Ref. [2]. In first place, we observe that for normalized errors of O(1%) all schemes have comparable perfor-
mance; however, when higher accuracy is required, high-order schemes reveal their superiority. In particular,
the pentadiagonal optimized scheme of Lui and Lele offers up to 25% cost saving over the corresponding
tenth-order, non-optimized pentadiagonal scheme (C2233) in the normalized error range 10�4

6 ~� 6 10�3.
What is perhaps more interesting to see is that, while for coarse representations (i.e. low cost) the best perfor-
mance is achieved for Courant numbers close to the stability limit, when more accurate representations are
sought for, optimal performance is achieved for small Courant numbers, as Fig. 3c clearly shows. This obser-
vation may provide useful guidance for CFD and CAA practice, as the time step is often chosen on empirical
grounds, by selecting a value conveniently close to the one dictated by stability restrictions.

We point out that, while in Fig. 3 we only report the efficiency analysis for centered schemes, the analysis
equally well applies to (compact) upwind schemes, which may be useful building blocks for high-accuracy
shock-capturing schemes (see, e.g. Ref. [10]); the main result of the study (not reported) is that upwind
schemes are less efficient that centered schemes having the same stencil width, which makes them less suitable
for CAA applications (see also Refs. [2,3]).

3.1. Effect of time integration

In order to investigate the effect of the time integration scheme, in Figs. 4 and 5 we report, respectively, the
error map and the efficiency analysis for the same spatial discretizations coupled with four-stage, fourth-order
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Fig. 5. ‘Optimal’ error, reduced wavenumber and Courant number as a function of cost for various spatial discretizations coupled with
RK4 time integration in one space dimension.
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Runge–Kutta (RK4) time integration. As expected [7], increased accuracy more than outweights increased
computational cost, and indeed all schemes are found to perform more efficiently with RK4 time integration.
It is also interesting to observe an increased effect of spatial discretization optimization, which promises up to
50% CPU time saving in this case (in a narrow range of error levels).
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3.2. Multi-dimensional problems

With regard to the issue of optimal performance for multi-dimensional problems, recalling the discussion
related to Fig. 1, and noticing that the only difference of the ‘multi-dimensional’ cost function from the ‘one-
dimensional’ one is the change in the slope of the iso-cost hyperbolas (see Eq. (27)), one may expect that the
optimal values of �u and �r for a given error level do not significantly differ from those found in the one-dimen-
sional analysis. The data reported in Fig. 6 show that this is indeed the case: the conclusion is that schemes
capable to operate at higher values of the reduced wavenumber are favoured even more for multi-dimensional
simulations, because of the increased importance of �u in the cost metric (Eq. (27)). Accordingly, high-order
and optimized schemes are expected to yield greater advantage over low-order ones for a given error level.
The validity of these arguments will be further discussed in Section 6, where sample results of multi-dimen-
sional calculations are presented.

4. Error analysis

The ‘local’ normalized error function e(u, r) defined in Eq. (17) can be readily related to the error defini-
tions used in previous studies. Indeed, for r! 0, since g(u, r) = 1 � irU(u) + O(r2), and e�iru = 1 � iru +
O(r2), we have
eðu; rÞ !r!0 jUðuÞ � uj=u � e0ðuÞ; ð28Þ

which is the definition of the relative error in wavenumber space used by Lele [8] assuming zero time integra-
tion error. However, note that Lele only considered central schemes, for which U 2 R, while the present def-
inition equally well applies to upwind schemes, for which U has non-zero imaginary part. On the other hand,
neglecting the spatial discretization error (i.e. setting U = u) one obtains the definition of time discretization
error used by Hu et al. [7]
etðzÞ ¼
1

z

Xs

m¼0

cmð�izÞm � e�iz

�����;
����� ð29Þ
where z = ru; however, note that Hu et al. consider only the numerator of Eq. (29) as a measure of the error.
The geometry of the iso-error curves in Fig. 1 indeed indicates that for small Courant numbers the error is
uniquely a function of the modified wavenumber, as given by Eq. (28), while at larger r the curves bend
becoming equilateral hyperbolas, i.e. the error becomes a function of z, as given by Eq. (29); with good
one has
eðu; rÞ � maxðe0ðuÞ; etðruÞÞ; ð30Þ

as shown in Fig. 7a.

With regard to the ‘global’ error, as defined in Eq. (24), the approximation (30) yields, after some algebra
�eð�u; �rÞ � maxð�e0ð�uÞ;�etð�r�uÞÞ; ð31Þ

where the ‘global’ spatial error is given by
�e0ð�uÞ ¼
1

�u
max

06u6�u
jUðuÞ � uj; ð32Þ
and the ‘global’ temporal error is
�etð�zÞ ¼
1

�z
max
06z6�z

Xs

m¼0

cmð�izÞm � e�iz

�����
�����; ð33Þ
with �z ¼ �r�u. Fig. 7b shows that Eq. (31) is a good approximation of the ‘true’ global error.
The condition of optimal performance for a given error level (say ~�) implies tangency of the associated iso-

error curve with the normalized iso-cost curves �cnD
� 1=ð�r�unDþ1Þ; this occurs near the bend of the �eð�u; �rÞ ¼ ~�

graph, and, according to the approximation (30), at the point where �e0ð�uÞ ¼ �etð�zÞ ¼ ~�. The problem of deter-
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Fig. 6. ‘Optimal’ error, reduced wavenumber and Courant number as a function of cost for various spatial discretizations coupled with
RK4 time integration in two space dimensions.
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mining the optimal performance of a given scheme can therefore be approximately decoupled into two sub-
problems, whereby the influence of space- and time-discretizations are considered separately, by: (i) computing
the optimal reduced wavenumber according to
�u�ð~�Þ ¼ �e�1
0 ð~�Þ; ð34Þ
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and (ii) computing the optimal Courant number from
�r�ð~�Þ ¼ �z�ð~�Þ=�u�ð~�Þ; �z�ð~�Þ � �e�1
t ð~�Þ; ð35Þ
the associated normalized cost is
~cð~�Þ ¼ �cnD
ð�u�ð~�Þ; �r�ð~�ÞÞ ¼ sN op

1

�r��u�nDþ1
: ð36Þ
For this reason spatial and temporal discretizations can (only approximately) be considered separately in the
error analysis.

It is interesting to observe that the analysis carried out for spatial discretizations by Lele [8] can be recast in
terms of the present formalism by defining the global spatial error as
�eL
0ð�uÞ ¼ max

06u6�u

jUðuÞ � uj
u

� �
; ð37Þ
the optimal value of the reduced wavenumber computed according to Eq. (34) then represents the first value of
�u for which �eL

0 ¼ ~�, and in Lele’s terminology it is labeled ‘resolving efficiency’ of the scheme, i.e. the range of
well-resolved wavenumbers (to be more precise, Lele defines the resolving efficiency as e1ð~�Þ ¼ �u�ð~�Þ=p). Note
that in principle Eq. (37) differs from the present definition of the spatial error function, as given in Eq. (32),
which, as we have shown, consistently derives from a sound definition of the overall error; in practice, how-
ever, the difference between the two definitions is limited to those intervals of the u axis where jU(u) � uj is
decreasing, and it does not affect the evaluation of the optimal reduced wavenumber.
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5. Optimization criteria

On the basis of the discussion reported in the previous section, optimized finite-difference schemes can in
principle be tailored for a specified target error level trying to maximize (see Eq. (36)) �u�ð~�Þ and �z�ð~�Þ, which
amounts to separately optimize (for the same error level ~�) the space and time-discretization schemes.

5.1. Optimized space discretizations

The optimization of a scheme for spatial discretization is achieved by maximizing its ‘spatial resolving effi-
ciency’ �u� for a given value of the normalized error. For the sake of the analysis, let us consider a family of
sixth-order compact difference approximations that satisfy Eq. (7), with Q = R = 2, q = r = 3, and
Fig. 8.
pentad
a3 ¼ �a�3 ¼ 1
60
þ 1

5
a2 � 1

20
a1;

a2 ¼ �a�2 ¼ � 3
20
þ 31

30
a2 þ 8

15
a1;

a1 ¼ �a�1 ¼ 3
4
� 5

3
a2 þ 1

12
a1;

8><
>: ð38Þ
where a1 = a�1 and a2 = a�2 are two free parameters. The specific choice a1 = 1/2, a2 = 1/20 yields the only
tenth-order scheme in the family (C2233). We have attempted to find members of this family of schemes that
maximize the resolving efficiency as a function of the normalized error level ~�. The optimal values of the coef-
ficients a1 and a2 thus obtained are plotted in Fig. 8, and reported in tabular form for representative values of ~�
in Table 1; in the table we also report data on the resolving efficiency of the (non-optimized) C2233 scheme. It is
evident that optimized spatial discretizations tailored for a specific error level in principle outperform C2233,
yielding 40–50% increase in the spatial resolving efficiency. Fig. 8 also indicates that the optimal coefficients
vary significantly with the error level, and that the optimal resolving efficiency may approach p (i.e. waves
can be resolved with almost two points-per-wavelength) at large levels of the error. It is interesting to observe
that the Lui and Lele scheme (which has a1 = 0.5381301488732363, a2 = 0.066633190123881123) very nearly
belongs to this class of optimal schemes, and attains optimal performance for an error level ~� � 7
 10�5.

5.2. Optimized time discretizations

The optimization of schemes for time integration is achieved by maximizing �z�, which can be interpreted as
a ‘temporal resolving efficiency’, for a given value of the normalized error, under the stability constraint
Optimal values of coefficients a1 (solid line), a2 (dashed line), and ‘spatial resolving efficiency’ �u� (dash-dotted line) for sixth-order,
iagonal optimized compact scheme.



Table 1
Coefficients and performance of space-optimized schemes for various target errors

~� a1 a2 �u� �u� (C2233)

10�5 0.5253882280 0.06077763382 1.726 1.160
10�4 0.5396065722 0.06742221409 2.098 1.436
10�3 0.5598183379 0.07781267648 2.478 1.764

Table
Coeffic

~�

10�5

10�4

10�3
Xs

m¼0

cmð�izÞm
�����

����� 6 1: ð39Þ
We have considered as representative example a four-stage, second-order Runge–Kutta scheme, i.e. set c1 = 1,
c2 = 1/2, and left two free parameters c3, c4. The results of the analysis are plotted in Fig. 9 and reported in
tabular form in Table 2; in the table we also report data on the resolving efficiency of the non-optimized RK4
scheme. Optimal time integration schemes have smaller values of c3, c4 than the non-optimized Runge–Kutta
scheme, which has c3 = 1/6, c4 = 1/24, and outperform RK4 yielding 20–40% increase in the temporal resolv-
ing efficiency. We point out that the four-stage Runge–Kutta scheme proposed by Hu et al. [7], which has
c3 = 0.162997, c4 = 0.0407574, does not belong to this class of optimized time integration schemes, and has
not been considered for comparison here since it does not satisfy the constraint (39), which makes it unsuitable
for long time integrations.

5.3. Performance of optimized schemes

In order to demonstrate the potential effect of the proposed optimization strategy we have considered a
series of target error levels ~� ¼ 10�3; 10�4; 10�5, and constructed finite-difference schemes combining space-
and time-optimized schemes tailored for the same error level; in our notation epsmn-opt denotes optimized
2
ients and performance of time-optimized schemes for various target errors

c3 c4 �z� �z� (RK4)

0.1661162857 0.04107313943 0.268 0.187
0.1653056266 0.04030427254 0.437 0.332
0.1636462002 0.03863560284 0.709 0.590



1E-06

1E
-06

1E-05

1E
-05

1E
-05

0.0001

0.0001

0.0001

0.001

0.001

0.01

0.01

0.1

0.1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100

1000

10

1

0.1

σ

1E
-08

1E-07

1E
-07

1E-06

1E
-06

1E-05

1E
-05

0.000

0.0001

0.0001

0.001

0.001

0.01

0.01

0.1

0.1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100

1000

10

1

0.1

σ

b

Fig. 10. Iso-contours of normalized ‘local’ (a) and ‘global’ (b) error function �eð�u; �rÞ (solid lines) and normalized (one-dimensional) cost
function 1=ð�r�u2Þ (dashed lines) for epsm4-opt optimized scheme. The upper boundary corresponds to �r ¼ rmax.

824 S. Pirozzoli / Journal of Computational Physics 222 (2007) 809–831
schemes tailored for a normalized error level ~� ¼ 10�n. The error map obtained with the epsm4-opt scheme
is depicted in Fig. 10, which confirms the occurrence of an extended range of well-resolved wavenumbers in
coincidence of its design error level ~� ¼ 10�4, over its non-optimized counterpart (C2233/RK4, see Fig. 4). The
nominal performance of optimized schemes (in two space dimensions) is illustrated in Fig. 11 and Table 3; the
values of optimal cost, reduced wavenumber and Courant number deduced from Tables 1 and 2 fairly agree
with the ones obtained from the exact cost minimization procedure. The most evident result is that space- and
time-optimized schemes can yield substantial savings, of the order of 60–70% in a decade around their design
error level, compared to the corresponding non-optimized scheme (C2233/RK4). The main effect of optimi-
zation is to increase the range of well-resolved wavenumbers (i.e. �u�ð~�Þ), while the optimal Courant number
does not vary significantly compared to the non-optimized scheme.

6. Applications

In order to demonstrate the practical usefulness of the concept of optimal performance of finite-difference
schemes, and to illustrate the actual advantages provided by optimized schemes, in the present section we have
carried out numerical simulations of the two-dimensional acoustics equations, which can be written in conser-
vation form as follows:
oq

ot
þ of

ox
þ og

oy
¼ 0; ð40Þ



Fig. 11. ‘Optimal’ error, reduced wavenumber and Courant number as a function of cost for space- and time-optimized schemes in two
space dimensions.
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where q = [u, v, p]T, f = [p, 0, u]T, g = [0, p, v]T. Working in such linear environment yields the significant
advantage of having a number of exact solutions to exploit for quantitative analysis. Preliminary simulations



Table 3
Performance of space- and time-optimized schemes for various target errors in two space dimensions

Scheme rmax ~� �u� �z� ~c2 D%

epsm5-opt 1.1694 10�5 1.512 0.266 111.87 69.55
epsm4-opt 1.1387 10�4 1.841 0.429 46.784 65.00
epsm3-opt 1.0863 10�3 2.209 0.693 20.108 59.03

D% denotes percent cost reduction over non-optimized reference scheme (C2233/RK4).
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have been performed on a computational domain [�10; 10] · [�10; 10] on a cartesian uniformly spaced grid
with hx = hy = h, for sinusoidal monochromatic acoustic waves propagating in the positive-x direction, with
initial conditions
Fi
p0ðx; yÞ ¼ sinð2pnxÞ; u0ðx; yÞ ¼ 0; v0ðx; yÞ ¼ 0; ð41Þ

and periodic boundary conditions; the calculations have been time-advanced up to a time T = 1. The exact
solution (~q) of the problem is
~pðx; y; T Þ ¼ cosð2pnT Þ sinð2pnxÞ;
~uðx; y; T Þ ¼ � sinð2pnT Þ cosð2pnxÞ;
~vðx; y; T Þ ¼ 0:

8><
>: ð42Þ
Extensive simulations have been carried out varying both n (which controls the wavenumber of the distur-
bances) and h (the mesh spacing); let the relative error at time T be defined as
g. 12. Computed iso-contours of normalized error for 1D wave propagation test case: (a) C2233/RK4 and (b) epsm4-opt.
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E ¼
P

i;jjqi;j � ~qðxi; yjÞj
2P

i;jjq0ðxi; yjÞj
2

" #1=2

; ð43Þ
in accordance with (14), and noticing that for the present problem the relevant wavenumber is w = 2pn, and
the propagation speed of disturbances is a = 1, we have plotted the computed normalized error, as defined in
(17), as a function of u = wh, r = ak/h in Fig. 12 for the C2233/RK4 and the optimized epsm4-opt schemes.
The error maps thus obtained are almost identical to the theoretical ones, shown in Figs. 4 and 10, and clearly
show that the results derived for the scalar, one-dimensional case, including optimal choice of mesh spacing
and time step, automatically apply to the present, single-scale vector problem.

Going one step further, we have considered the propagation of monochromatic acoustic disturbances in the
±45� directions, with initial conditions
p0ðx; yÞ ¼ sinð2pnxÞ sinð2pnyÞ; u0ðx; yÞ ¼ 0; v0ðx; yÞ ¼ 0; ð44Þ

with periodic boundary conditions and in the same computational box as the first test case. An exact solution
for the problem at time T(= 1) is given by [4]
~pðx; y; T Þ ¼ cosð2
ffiffiffi
2
p

pnT Þ sinð2pnxÞ sinð2pnyÞ;
~uðx; y; T Þ ¼ � sinð2

ffiffiffi
2
p

pnT Þ cosð2pnxÞ sinð2pnyÞ=
ffiffiffi
2
p

;

~vðx; y; T Þ ¼ � sinð2
ffiffiffi
2
p

pnT Þ sinð2pnxÞ cosð2pnyÞ=
ffiffiffi
2
p

:

8><
>: ð45Þ
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g. 13. Computed iso-contours of normalized error for 2D wave propagation test case: (a) C2233/RK4 and (b) epsm4-opt.
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For this test case the relevant wavenumber is w ¼ 2pn
ffiffiffi
2
p

, and the relevant grid spacing (in the direction nor-
mal to the wave front) is h=

ffiffiffi
2
p

. The results of computations performed at various n and h are reported in terms
of distributions of the normalized L2 error in Fig. 13. Once again, the maps very closely replicate the results
obtained from the analysis of the scalar, one-dimensional advection equation, and the theoretical results en-
tirely apply.

In practical problems one seldom has to deal with waves traveling only in one direction, nor has monochro-
matic waves. Therefore, the next level of complexity that we have considered is the isotropic propagation of a
pressure pulse in an unbounded domain, with initial conditions
Fig. 14
The da
perfor
p0ðx; yÞ ¼ expð�ar2Þ; u0ðx; yÞ ¼ 0; v0ðx; yÞ ¼ 0; ð46Þ

where r = (x2 + y2)1/2, a ¼ log 2=r2

0, and which has the following exact solution at time T [5]
~pðx; y; T Þ ¼ 1
2a

R1
0 exp � n2

4a

� �
cosðnT ÞJ 0ðnrÞndn;

~uðx; y; T Þ ¼ x
2ar

R1
0

exp � n2

4a

� �
sinðnT ÞJ 1ðnrÞndn;

~vðx; y; T Þ ¼ y
2ar

R1
0

exp � n2

4a

� �
sinðnT ÞJ 1ðnrÞndn;

8>>>><
>>>>:

ð47Þ
where J0 and J1 are, respectively, the zeroth- and first-order Bessel functions of the first kind. Approximate
solutions for this test case have been computed for r0 = 1 on the domain [�10; 10] · [�10; 10] at a time
b

. Computed iso-contours of normalized error for 2D acoustic pulse propagation test case: (a) C2233/RK4 and (b) epsm4-opt.
shed line corresponds to the iso-cost contour ~c2 ¼ 46:784. �, theoretical point of optimal performance; �, actual point of optimal

mance.



T = 5; under such conditions the pressure pulse has not yet reached the boundary of the computational do-
main, and the error incurred with approximate treatment of boundary conditions (where we have enforced
zero time derivative of all variables) is very small. The error norms of the computed solutions have been ob-
tained by comparing with very accurate approximations of (47) obtained from high-order numerical quadra-
ture formulas, whose convergence to the exact solution within machine precision has been carefully checked.
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For the present test case a relevant wavelength for the pulse is k � 2r0, and accordingly we have set �w ¼ p. The
distributions of the normalized errors in the (u, r) plane for this test case are shown in Fig. 14; we observe
that, although the shape of the iso-error curves again resembles Figs. 4 and 10b, the actual error, which is
related to the occurrence of a whole spectrum of wavelengths in the solution and is made up of a weighted
superposition of the errors associated to each harmonic, is clearly different from the theoretical one.

In order to show that some conclusions of the theoretical analysis still hold in the present case, in Fig. 15 we
have reported the ‘optimal’ normalized error, reduced wavenumber and Courant number as a function of cost,
as found from numerical simulations (i.e. as retrieved from the data reported in Fig. 14) for the C2233/RK4
and epsm4-opt schemes, and compared them with the corresponding theoretical predictions (already
reported in Fig. 11). The figure confirms a lack of correspondence of the theoretical ‘optimal’ error-cost maps
(lines) with the computed ones (lines + symbols); however, the qualitative behavior is the same, and in partic-
ular the optimized scheme is confirmed to be more efficient than its non-optimized counterpart in a certain
range of cost (error) levels, even though the improvement is not as significant as expected. Although, as
pointed out, the actual error levels do not correspond to the nominal ones, the optimal values of the reduced
wavenumber and Courant number seem to obey (approximately) the same relationship upon the normalized
cost ð~c2Þ as found from the theoretical analysis, as Fig. 15b–c clearly shows. In particular, the optimal working
points for the C2233/RK4 scheme fall very close to the theoretical ones, while larger discrepancies are found
for the epsm4-opt scheme. This observation confirms that the theory here developed can be used to infer the
optimal operating conditions of a numerical scheme even for practical applications.

The procedure to determine the optimal computational settings in this case involves reasoning in terms of
computational cost; let us consider, for example, a cost level ~c2 ¼ 46:784, which corresponds to the design cost
for the epsm4-opt scheme (see Table 3) for a (nominal) normalized error level ~� ¼ 10�4; the associated opti-
mal values of reduced wavenumber and Courant number for the epsm4-opt scheme are �u� ¼ 1:841 and
�r� ¼ 0:233 (reported as a filled circle in Fig. 14b), which give an optimal grid spacing hx ¼ hy ¼
h ¼ �u�=�w ¼ 0:586 (that is approximately obtained with Nx = Ny = 34 cells), and an optimal time step
k ¼ �r�h=a ¼ 0:137. Using such computational settings the epsm4-opt scheme yields a normalized error
~� ¼ 5:775
 10�5. We point out that the ‘theoretical’ optimal conditions are somewhat different from the ‘true’
optimal ones, as determined from the numerical simulations (reported as a hollow circle in Fig. 14b), which
would give instead ~� ¼ 3:046
 10�5. For the same normalized cost level the C2233/RK4 scheme theoretically
provides optimal performance at �u� ¼ 1:653 and �r� ¼ 0:322 (reported as a filled circle in Fig. 14a), that very
closely correspond to the actual optimal values (hollow circle). The resulting values of the optimal grid spacing
and time step are hx = hy = h = 0.526 (i.e. Nx = Ny = 38) and k = 0.169, for which the incurred error is
~� ¼ 8:439
 10�5. The improvement of the optimized scheme with respect to its non-optimized counterpart
(in terms of error decrease for given cost) is �31.5%; for the same cost levels the theoretical error reduction
would be �63.9%.

We may summarize the conclusions of the present analysis as follows: (i) the one-dimensional analysis car-
ried out in the previous sections provides a useful guidance for determining the conditions for optimal perfor-
mance (least cost) of a given scheme for a given cost level, even though some discrepancies are found with
respect to the ‘actual’ optimal conditions for the optimized schemes; (ii) as expected, the actual error levels
found in numerical simulations of multi-scale problems do depend upon the solution itself, and therefore can-
not be accurately predicted from the outset; (iii) optimized schemes generally yield an improvement over non-
optimized ones in terms of error decrease for given cost level (around their design value), however such
decrease is heavily solution-dependent, and less than the theoretically predicted one.

7. Conclusions

In the present paper we have developed a rational procedure to gauge the performance of finite difference
approximations for linear wave propagation problems, based on the analysis of the one-dimensional linear
advection equation. After rigorously defining error and cost metrics, we have devised a roadmap to follow
for optimal exploitation of computational resources: (i) for a given problem (characterized by a maximum
expected wavenumber �w, maximum expected speed �a, and final time T), and for a given maximum error tol-
erance �, the corresponding normalized error level is determined ~� ¼ �=ð�a�wT Þ; (ii) the most efficient space- and
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time-discretization scheme for the specified error level is selected among existing ones or among the optimized
ones proposed in Section 5 by analyzing the respective cost vs. error plots, as reported for example in Fig. 3a;
(iii) for the selected scheme, optimal values of the reduced wavenumber ð�u�ð~�ÞÞ and of the Courant number
ð�r�ð~�ÞÞ are obtained, for example from Fig. 3; (iv) optimal values for the grid spacing and the time step are
obtained according to h�ð~�Þ ¼ �u�ð~�Þ=�w; k�ð~�Þ ¼ �r�ð~�Þh�ð~�Þ=�a.

The theoretical analysis of the performance of various schemes has shown that high-order, and in particular
optimized schemes, are in principle more efficient than low-order ones when high-fidelity solutions are sought
for; this is even more so in several space dimensions. The analysis of the global error has shown that it is
(approximately) made up of two terms, one associated with spatial discretization and one associated with time
integration. This observation has led us to formulate general optimization criteria for the design of tailored
space- and time-discretization schemes. An example carried out for a sixth-order pentadiagonal compact
scheme with four-stage second-order Runge–Kutta time integration has shown that nominal reductions of
the computational cost of the order of 60–70% are possible in a rather wide range of error levels. Numerical
simulations of the two-dimensional acoustics equations have shown that the analysis directly applies single-
scale multi-dimensional linear wave propagation problems.

Difficulties arise for the analysis in case of multi-dimensional systems of equations with various wave speeds
and various angles; in such case the overall solution error is heavily dependent upon the solution itself, and (in
a linear setting) it is a weighted average of the errors associated with each wavenumber and propagation angle;
it is far from clear how the analysis, which only conveys information on a relevant lengthscale of the solution
ð�wÞ, can help the selection of proper values of grid spacing and time step. Nevertheless, numerical simulations
of an isotropic pressure pulse propagation in a two-dimensional environment have shown that the theory
developed in the present paper still applies to some extent, provided the efficiency analysis is carried out in
terms of obtaining the least error for given computational cost, the main reason being that the cost metric
is not solution-dependent. For such test case optimized schemes are found to retain some advantage over
non-optimized ones, even though the actual improvement may be far less than theoretical predictions.

We expect that the present analysis may also give some benefit for weakly nonlinear problems, because the
leading order effects due variable wave speed and multiple flow scales are naturally accounted for; precise
assessment of this statement is made difficult by the lack of exact solutions, and further efforts are required
in this direction. We must also point out that the main focus of the paper was on the characterization of
the propagation features of numerical schemes in an unbounded space, and the issue of boundary conditions
has been left unaddressed. Proper enforcement of numerical boundary conditions is of utmost importance for
the accuracy and stability of numerical algorithms, and future efforts will be concentrated on assessing the
impact of boundary closures on the conclusions drawn in this study, and on designing suitable closures for
optimized schemes.
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